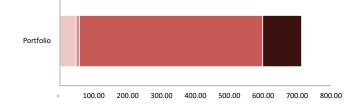


# **PORTFOLIO ASSESSMENT SUMMARY REPORT** (TCFD ALIGNED)



LF Sterling Corporate Bond Index Pension Fund


> as of : 30/12/2022 Market value : 35,347,789

# CARBON PERFORMANCE

The analysis of carbon footprint allows investors to quantify the GHG emissions apportioned to their portfolio and/or benchmark, presented as the amount of  $tCO_2e$  apportioned to the investor. The lower, the better.

Additionally, carbon intensity allows comparison between different companies or portfolios, irrespective of size and geography.

| Carbon Footprint   | Portfolio |
|--------------------|-----------|
| Scope 1            | 47.53     |
| Scope 2            | 10.00     |
| Scope 3 Downstream | 540.98    |
| Scope 3 Upstream   | 114.54    |



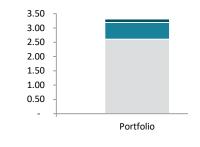
| Portfolio |
|-----------|
| 25.76     |
| 40.11     |
|           |



Portfolio

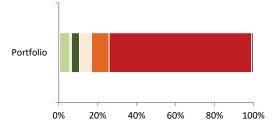
| Market Value Covered in % |       |
|---------------------------|-------|
| ECPI                      | 81.60 |
| S&P Trucost               | 50.78 |

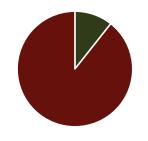
| Intensity Top 10 Securities | Total Intensity<br>(tCO2e/\$M) |
|-----------------------------|--------------------------------|
| Bac 7 07/31/28              | 7.04                           |
| Lloyds 6 02/08/29           | 4.60                           |
| Eib 0 ½ 12/14/26            | 0.76                           |
| Eib 0 ¾ 11/15/24            | 0.76                           |
| Eib 1 09/21/26              | 0.76                           |
| Eib 4 ½ 06/07/29            | 0.76                           |
| Eib 5 04/15/39              | 0.76                           |
| Eib 5 % 06/07/32            | 0.76                           |
| Eib 6 12/07/28              | 0.76                           |
| European 1.375% 07/03/25    | 0.76                           |


| Top 10 by Carbon Footprint | Weight | Carbon<br>Footprint Total<br>(tCO₂e/\$M) | Carbon<br>Footprint<br>Scope 1<br>(tCO₂e/\$M) | Carbon<br>Footprint<br>Scope 2<br>(tCO₂e/\$M) | Carbon<br>Footprint<br>Scope 3<br>Downstream<br>(tCO2e/\$M) | Carbon<br>Footprint<br>Scope 3<br>Upstream<br>(tCO₂e/\$M) | Absolute:<br>GHG Direct<br>(tCO2e) | Absolute:<br>GHG First<br>Tier Indirect<br>(tCO2e) | Intensity:<br>GHG Direct<br>(tCO₂e/\$M) | Intensity:<br>GHG First<br>Tier Indirect<br>(tCO2e/\$M) |
|----------------------------|--------|------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |
|                            |        |                                          |                                               |                                               |                                                             |                                                           |                                    |                                                    |                                         |                                                         |

#### FOSSIL FUELS & STRANDED ASSETS

Future emissions from fossil fuel reserves tend to exceed the allowed carbon budget supposed to limit global warming to 2° Celsius above pre-industrial levels.


Below the exposure to carbon-related assets as well as holdings in companies that have disclosed proven and probable fossil fuel reserves.


| Exposure to Fossil Fuels                            | Portfolio        |
|-----------------------------------------------------|------------------|
| % from Fossil Fuels                                 | 2.61             |
|                                                     |                  |
|                                                     |                  |
| Exposure to Coal Activities                         | Portfolio        |
| Exposure to Coal Activities                         | Portfolio        |
| Exposure to Coal Activities<br>% from Metallurgical | Portfolio<br>N/A |
| •                                                   |                  |



| Power Generation in GWh | Portfolio | Percentage |
|-------------------------|-----------|------------|
| Renewable               | 34,071.53 | 11%        |
| Biomass                 | 622.33    | 0%         |
| Geothermal              | 964.33    | 0%         |
| Hydroelectric           | 16,740.13 | 5%         |
| Solar                   | 1,997.85  | 1%         |
| Wave and Tidal          | 543.00    | 0%         |
| Wind                    | 13,203.89 | 4%         |

| Non-Renewable        | 285,772.58 | <b>89</b> % |
|----------------------|------------|-------------|
| Coal                 | 19,775.30  | 6%          |
| Landfill Gas         | N/A        |             |
| Liquid Natural Gas   | N/A        |             |
| Liquid Petroleum Gas | N/A        |             |
| Natural Gas          | 28,885.41  | 9%          |
| Nuclear              | 234,077.19 | 73%         |
| Petroleum Oil        | 2,892.03   | 1%          |
| Undefined Sources    | 142.64     | 0%          |





Renewable
Non-Renewable

| Top 10 by Coal Consumption | Weight | Energy<br>Consumption<br>from Coal<br>(GWh) | Fossil Fuel<br>Exposure | Coal<br>Gasification<br>Exposure | Coal<br>Liquefaction<br>Exposure | Energy<br>Cons Non-<br>Renewable<br>(GWh) | Energy Cons<br>Renewable<br>(GWh) | Energy<br>Prod Non-<br>Renewable<br>(GWh) | Energy Prod<br>Renewable<br>(GWh) |
|----------------------------|--------|---------------------------------------------|-------------------------|----------------------------------|----------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------|
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |
|                            |        |                                             |                         |                                  |                                  |                                           |                                   |                                           |                                   |

| Top 10 by Coal Mining Revenue | Weight | % Coal Mining<br>Revenue/<br>Total Revenue | Fossil Fuel<br>Exposure | Coal<br>Gasification<br>Exposure | Coal<br>Liquefaction<br>Exposure | Metallurgical<br>Coal Mining<br>Revenue (\$M) | Coal Mining<br>Revenue (\$M) | Thermal<br>Coal Mining<br>Revenue (\$M) | Undefined<br>Coal Mining<br>Revenue (\$M) |
|-------------------------------|--------|--------------------------------------------|-------------------------|----------------------------------|----------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------|-------------------------------------------|
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |
|                               |        |                                            |                         |                                  |                                  |                                               |                              |                                         |                                           |

#### GREEN TAXONOMY DISCLOSURES

Sustainable product classification and labelling system includes differentiation between products not promoted as sustainable and products promoted as responsible, which may have some sustainable investments. The sustainable products may be split across:

- Aligned => products with sustainable characteristics, themes or objectives; high allocation to Taxonomy-aligned sustainable activities
- Transitioning => products with sustainable characteristics, themes or objectives; low allocation to Taxonomy-aligned sustainable activities

|           | % Total<br>Not Eligible | % Total<br>Eligible | % Enabling | % Transitional |
|-----------|-------------------------|---------------------|------------|----------------|
| Portfolio | 82.93                   | 15.70               | 5.90       | 9.80           |

|           |             | Construction<br>and Real<br>Estate | Electricity,<br>Gas, Steam<br>and A/C |          |      |               | Transportation | Water,<br>Sewerage,<br>Waste and | Multiple |
|-----------|-------------|------------------------------------|---------------------------------------|----------|------|---------------|----------------|----------------------------------|----------|
|           | Agriculture | Activities                         | Supply                                | Forestry | ICT  | Manufacturing | and Storage    | Remediation                      | Sources  |
| Portfolio | -           | 4.91                               | 1.06                                  | -        | 3.20 | 2.59          | 0.97           | -                                | 2.96     |

| Top 10 by Enabling Activities | Weight |     |     |     |     |     |     |     |     |     |
|-------------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| NRW 0 % 12/16/24              | 0.50   | N/A |
| NRW 2 ½ 06/13/25              | 0.06   | N/A |
| NRWBK 0 ¾ 12/16/24            | 0.18   | N/A |
| NRWBK 0 ½ 12/15/25            | 0.32   | N/A |
| Lloyds 6 02/08/29             | 0.43   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| Bac 7 07/31/28                | 0.46   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| Nothll 3 ¾ 12/20/32           | 0.08   | N/A |
| Nothll 4 ¾ 02/20/54           | 0.04   | N/A |
| Nothll 5 ¼ 07/07/42           | 0.09   | N/A |
| Nothll 6.064 12/21/39         | 0.09   | N/A |

# TOWARDS NET-ZERO

The international Paris Agreement on climate change mentions 3 long-term goals: The first 2 focus on climate mitigation and adaptation, while the 3<sup>rd</sup> is "to make all financial flows consistent with a pathway towards low-emissions, climate-resilient development". This recognizes the key role that financial institutions play in realising the Paris Climate Agreement – including the need to achieve net-zero emissions by mid-century and reduce emissions 50% by 2030.

|           | 2°C Aligned<br>Intensity<br>Adjusted<br>Profit<br>(tCO2e/\$M) | Alignment<br>Gap Well<br>Below 2°C<br>(tCO2e) | Alignment<br>Gap 2°C<br>(tCO2e) | Alignment<br>Gap 3°C<br>(tCO2e) | Alignment<br>Gap 4°C<br>(tCO2e) | Alignment<br>Gap 5°C<br>(tCO2e) |  |
|-----------|---------------------------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Portfolio | 191.92                                                        | 1,959,487                                     | -14,619,238                     | -31,687,739                     | -19,645,384                     | -21,360,657                     |  |

| Top 10 by Weight  | Weight | Alignment<br>Gap Well<br>Below 2°C<br>(tCO₂e) | Alignment<br>Gap 2°C<br>(tCO2e) | Alignment<br>Gap 3°C<br>(tCO₂e) | Alignment<br>Gap 4°C<br>(tCO₂e) | Alignment<br>Gap 5°C<br>(tCO₂e) | Туре    | Methodology | Source of Forward<br>Looking Data |
|-------------------|--------|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------|-------------|-----------------------------------|
| Bac 7 07/31/28    | 0.46   | -1,936,143                                    | -5,620,576                      | -7,816,623                      | -8,477,336                      | -8,871,177                      | <1.5°C  | GEVA        | Company target                    |
| Lloyds 6 02/08/29 | 0.43   | 170,418                                       | -514,209                        | -921,280                        | -1,043,674                      | -1,116,537                      | 1.5-2°C | GEVA        | Company target                    |
|                   |        |                                               |                                 |                                 |                                 |                                 |         |             |                                   |
|                   |        |                                               |                                 |                                 |                                 |                                 |         |             |                                   |
|                   |        |                                               |                                 |                                 |                                 |                                 |         |             |                                   |
|                   |        |                                               |                                 |                                 |                                 |                                 |         |             |                                   |
|                   |        |                                               |                                 |                                 |                                 |                                 |         |             |                                   |
|                   |        |                                               |                                 |                                 |                                 |                                 |         |             |                                   |
|                   |        |                                               |                                 |                                 |                                 |                                 |         |             |                                   |

# SCENARIO ANALYSIS

The assessment of physical risks is key as they also (or mostly) result from climate change. Companies are scored 1-100 for each of the key hazard risk types (coldwave, heatwave, hurricane, floods, wildfire, water stress etc).

The assessment is made available across different climate change scenarios (low, medium, high) and future reference years (2030, 2050).

|                | Low   |       |       | Medium |       |       | High  |       |       |
|----------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|
| Sensitivity    | 2020  | 2030  | 2050  | 2020   | 2030  | 2050  | 2020  | 2030  | 2050  |
| Composite      | 15.74 | 15.57 | 15.64 | 15.67  | 15.71 | 15.69 | 15.78 | 15.50 | 15.97 |
| Coldwave       | 38.82 | 34.18 | 31.10 | 38.82  | 32.95 | 26.75 | 38.82 | 31.95 | 19.93 |
| Flood          | 3.04  | 2.80  | 2.97  | 3.04   | 2.80  | 2.97  | 3.04  | 2.75  | 2.76  |
| Heatwave       | 8.35  | 10.59 | 12.11 | 7.78   | 10.20 | 10.20 | 9.12  | 12.33 | 20.74 |
| Hurricane      | 4.51  | N/A   | N/A   | 1.00   | N/A   | N/A   | 1.00  | N/A   | N/A   |
| Sea Level Rise | 4.08  | 4.16  | 4.74  | 4.08   | 4.16  | 5.78  | 4.08  | 4.17  | 7.07  |
| Water Stress   | 53.23 | 55.00 | 57.01 | 53.23  | 55.00 | 56.28 | 53.23 | 53.76 | 53.26 |
| Wildfire       | 12.04 | 12.13 | 11.53 | 12.04  | 12.80 | 13.14 | 12.04 | 12.27 | 12.83 |

| Top 10 by Weight  | Weight | Sensitivity<br>Composite<br>Score 2020<br>(High Scenario) | Coldwave<br>Score 2020<br>(High Scenario) | Flood<br>Score 2020<br>(High Scenario) | Heatwave<br>Score 2020<br>(High Scenario) | Hurricane<br>Score 2020<br>(High Scenario) | Score 2020 | Water Stress<br>Score 2020<br>(High Scenario) | Wildfire<br>Score 2020<br>(High Scenario) |
|-------------------|--------|-----------------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------|------------|-----------------------------------------------|-------------------------------------------|
| Bac 7 07/31/28    | 0.46   | 4.00                                                      | 39.00                                     | 3.00                                   | 11.00                                     | N/A                                        | 2.00       | 60.00                                         | 24.00                                     |
| Lloyds 6 02/08/29 | 0.43   | 2.00                                                      | 40.00                                     | 2.00                                   | 7.00                                      | N/A                                        | 5.00       | 46.00                                         | 2.00                                      |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |
|                   |        |                                                           |                                           |                                        |                                           |                                            |            |                                               |                                           |